Sign test

Josemari Sarasola - Gizapedia

Statistics for Business

(®)

Sign test

Definition

Sign test is a non-parametric test, a special case for the binomial test with $p=1 / 2$, with these applications:

- for a simple sample, testing is the population has a given value for the median; e.g., given the sample $3.1,2.4,5.6,6.7,4.2,3.8$, we may test by the sign test if the sample is compatible with a population with $M e=3.5$.
- for paired samples, testing is the difference of medians for both populations us 0 , that is, if one population takes bigger values than the other one. E.g., after applying a given fertilizer, to test is a plant gives better returns.
- Setting confidence intervals for the median.
- Non-parametric tests are tests that don't set a given distribution for the population, so they are more flexible.
- By means of a binomial test, we decide if a given p probability is compatible with data.

Sign test

Test about the median (I)

- The median is the value that leaves below it 50% of data, that is, a 0.5 probability.
- Hence, in a population the probability for one data being below the median is 0.5 .
- To perform the test, variable must be continuous, that is, it must take many different values.
- Under the null hypothesis, we set a given value for the median: $H_{0}: M e=m$. Alternatively, $H_{a}: M e \neq m$.

Sign test

Test about the median (II)

- We assign the - sign to the data below $M e=m$; to the data above $M e=m$, we assign the + sign.
- We count - and + data: r^{-}and r^{+}.
- This test is two-sided: we reject the null hypothesis, $H_{0}: M e=m$, when r^{-}and r^{+}values are very big and very small. In order to accept H_{0}, r^{-}and r^{+}should be close to the number of data divided by 2 .
- But, in order to perform the test in a standard way, we take always the smallest value between r^{-}and r^{+}. We name this value r.
- As is the smallest value, we reject $H_{0}: M e=m$ when r is small enough.

Sign test

Test about the median (III)

- For small samples, we look for the r^{*} critical value into the tables, for different values of the α significance level.
- We reject the null hypothesis, that is, the value given for the median, when we have $r \leq r^{*}$.
- As the variable is continuous, in theory there is no data equal to the median value, but if it were, we would remove it.

Sign test

Test about the median (IV): calculating p value

- The probability for one data of being below of above the median in the null hypothesis is 0.5 .
- For n data, the number of data below or above the median is distributed $B(n, 0.5)$.
- For n data, the smallest number of signs will be x when the number of data below median are x or data above median is x.
- And the probability for that event is:

$$
\begin{aligned}
P[\min =x] & =P[\text { above } M e=x]+P[\text { below } M e=x] \\
& =0.5^{x} 0.5^{n-x} \frac{n!}{x!(n-x)!}+0.5^{x} 0.5^{n-x} \frac{n!}{x!(n-x)!} \\
& =2 \times 0.5^{n} \frac{n!}{x!(n-x)!}
\end{aligned}
$$

- The p -value is the probability for the evidence or something stranger. As we took the minimum value, "the strange thing" is on the lower side. So:

$$
p=P[X \leq x]=2 \sum_{i=1}^{x} 0.5^{n} \frac{n!}{i!(n-i)!}=2 \times 0.5^{n} \sum_{i=1}^{x} \frac{n!}{i!(n-i)!}
$$

Sign test

Test about the median (V): example

- Data: 6.14-6.45-8.33-11.05-5.67-5.22-7.52-10.08-12.34
- We want to test if the median in the population is $7: H_{0}: M e=7$. We set $\alpha=10 \%$.
- We set the signs:,,,,,,,,--++--+++ .
- $r^{-}=4 ; r^{+}=5$. We take the smallest one: $r=4$.
- We look for the critical value into the table: $r^{*}=1$.
- As r is above that value, we accept the null hypothesis, that is, that median is 7 .
- The p -value is the probability of having 4 data below the median (and not above the median):

$$
\begin{aligned}
p=P[X \leq 4] & =P[X=0]+P[X=1]+P[X=2]+P[X=3]+P[X=4] \\
& =0.5^{0} \cdot 0.5^{9} \cdot \frac{9!}{0!9!}+0.5^{1} \cdot 0.5^{8} \cdot \frac{9!}{1!8!}+0.5^{2} \cdot 0.5^{7} \cdot \frac{9!}{2!7!} \\
& +0.5^{3} \cdot 0.5^{6} \cdot \frac{9!}{3!6!}+0.5^{4} \cdot 0.5^{5} \cdot \frac{9!}{4!3!}=\sum_{i=1}^{4} 0.5^{9} \frac{9!}{i!(9-i)!}=0.5
\end{aligned}
$$

- Here we compare the p -value to $\alpha / 2$, as we have not taken into account that the smallest r may also be the number of signs above the median. As we have $p>\alpha / 2$, we accept $H_{0}: M e=7$.

Sign test

Test about the median (VI): one-sided tests

- Data: 1.34-2.45-0.33-4.73-0.68-1.02-3.13-3.45
- We want to test if median is bigger than 0.5: $H_{0}: M e \geq 0.5 . \alpha=10 \%$
- We take the median as 0.5 (boundary value), and assign signs to data: ,,,,,,,$++-+++++\rightarrow r^{-}=1 ; r^{+}=7$
- We reject $H_{0}: M e>0.5$ when r^{-}is very big (r^{+}very small).
- We look at the smallest, in order to use the tables. So in this case we have to look at the r^{+}value.
- We take the critical value from the table (we have to multiply α by 2)*: $n=8, \alpha=0.20 \rightarrow r^{*}=1$
- The value for the statistic, $r^{+}=7$, is bigger than the critical value, $r^{*}=1$, so we accept that median is bigger than 0.5 .
* One-sided tests with α significance levels and two-sided tests with 2α significance levels have the same critical values. As tables are given for two-sided tests, we multiply α by 2 . See the annex.

Test about the median (VII): one-sided tests

A summary:

- for $H_{0}: M e \leq m$, look at r^{-}.
- for $H_{0}: M e \geq m$, look at r^{+}.
- Then, look for the r^{*} critical value on tables, after multiplying α by 2 , and take the decision.

Sign test

Paired samples (I): concept

- The sign test may be used to compare the medians two paired samples.
- We say that two samples are paired when they are taken over the same elements, before and after a treatment.
- E.g., we have paired samples when we measure the quantity of a substance into the blood before and after taking a drug for the same group of patients; and when we take califications over the same students at the beginning and end of the course.
- The null hypothesis may be
$H_{0}: M e(e n d)-M($ beginning $)=0$
(medians are the same, so if we reject that medians are just different, without giving an explicit direction);
$H_{0}: M e(e n d)-M($ beginning $) \geq 0$ (median at the end is bigger) or $H_{0}: M e(e n d)-M($ beginning $) \leq 0$ (median at the end is smaller).
- Variable must be continuous, in order to avoid ties.

Sign test

Paired samples (II): procedure

- Calculate differences for both samples values: $x($ end $)-x$ (beginning).
- If the difference is positive, write + ; if negative, write -
- Proceed as in the tests for one sample, taking into acconut if the test is one-sided or two-sided.

Sign test

Paired samples (III): example

- In a class we have measured mathematical ability at the beginning and the end of the course:
- Beginning: 4.2-6.5-7.2-5.4-8.4-5.6-7.4-7.2
- End: 5.4-6.6-7.4-7.0-8.2-6.8-7.3-7.8
- Question: have the students bigger ability after the course? $\alpha=0.10$
- Assign signs after calculating differences:++++-+-+
- 6 positive and 2 negative. So, we may claim that course increased the ability. Otherwise, we couldn't claim it and the test would be over.
- We take the smallest: $r=2$.
- We take the critical values into the tables:

$$
n=8, \alpha=0.20(2-\text { sided }) \rightarrow r^{*}=1
$$

- We have $r>r^{*}$, so we accept that the median difference is 0 , and cannot claim that the course was profitable (we should have 1 negative at most for that).

Applying the sign test: confidence interval about the median

Steps with example

- Give 95% confidence interval about the median for these data:
- Ordered data: 6.14-6.45-8.33-11.05-5.67-5.22-7.52-10.08-12.34
- Sample size: 9 .
- Give cumulated probabilities for $B(n=9, p=0.5)$ distribution.
- $(x=0, p=0.0009) ;(x=1, p=0.01) ;(x=2, p=0.054) ; \ldots$
- Take the value that leaves at most a 2.5% probability (non confidence level, 5%, divided by 2 , because the interval is symmetric). At most, because we take the confidence level at least.
- That value is $x=1$. We take $x+1=2$.
- We take the $x+1=2$ nd data fron the beginning and the end.
- So, with 98% confidence level $(1-0.01 \times 2)$, we can claim that median is between 6.45 and 10.08 .

Sign test

Big samples

When n sample size is big, we are out of the table when we look for critical values. In such cases, we have to apply the De Moivre-Laplace theorem (in a following lesson - Normal distribution and stochastic convergence), using the normal distribution as an approximation for the binomial distribution.

Remark: we will probably solve a problem as an example for such cases in that lesson.

Sign test

Annex 1: Why we take 2α in tables for one-sided sign tests

