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Introduction to Statistical Inference

In statistics, we usually seek to know about populations, as a
collective and a feature about it (e.g., height of 18 aged people) or
as a variable of interest (e.g, daily production in a factory). As that
feature is variable, we can take it as a random value, and so we
assign that feature a probability distribution, with some unknown
parameters (a mean or a proportion, e.g). That probability
distribution is a simplified representation of the population, so we
also call it a model. Along the next explanations, population,
distribution and model will be (almost) interchangeable terms.
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Introduction to Statistical Inference

Most times, it’s not possible to take data about all elements in a
population (too expensive or cannot list all the elements in a
population), so we take a sample to get information (infer) about
the population. Samples must be random in order to be
representative about the population.

Population

Sample
randomly

infer from sample about population
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Introduction to Statistical Inference

Known the exact (with exact parameters) probability distribution
or model for a population, we can solve many practical problems
about it, as we have seen in the previous lessons about concrete
probability distributions (Poisson, uniform, exponential, binomial,
...).

But these questions arise right away:

1 How do we set a probability distribution for a given
population?

2 How do we quantify the parameters for that distribution?
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How do we set a probability distribution
for a given population?

At the beginning of the inference process, generic models or
distributions can be roughly assumed for a population. E.g., we
can assume that sales follow a normal distribution, when after
plotting the data, we see a rough bell shaped symmetric curve.
Don’t worry: these models will be tested at the end of the process.

How do we quantify the parameters for that population
(more exactly the model set for that population?

The parameters of the model or distribution must be inferred or
quantified from data.
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Introduction to Statistical Inference

Main problem

So, the main problem in statistical inference is inferring the
parameters of a population defined by means of a random model or
probability distribution from a sample or subset of data taken from
the whole population. At the end, we will test the overall model
(generic model plus inferred parameters).
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Introduction to Statistical Inference

Steps in inference process

Hence, briefly, these are the main steps in inference process:

1 Drawing a random sample from the population.

2 Choosing and assuming a suitable model for the population.

3 Think about how to quantify (infer) parameter values from
sample: we must choose estimators.

4 Apply estimators and consequently quantify parameters.

5 Validate model+quantified parameters and other assumptions.
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Introduction to Statistical Inference

First step: drawing the sample

The sample must be random to be representative about the
population. We will test at the end that the sample is really
random. We must take samples because analyzing all elements in a
population is difficult, expensive or because we cannot list all the
elements (we call that an infinite population).

Infinite populations: no. of customers entering a shop every
hour, daily maximum tenperatures in March.

Finite populations: students in Faculty of Economics, families
in Gipuzkoa.

We will assume that our populations are infinite. Inference in finite
populations must be learnt apart.
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Introduction to Statistical Inference

Second step: model choosing

Taken the sample, we must set a distribution or model for those
data:

looking at the histogram or other kind of plot for data (flat
histogram → uniform distribution)

looking at the nature of data: customers arrivals are usually
random and independent, so we can take for those a Poisson
model.
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Introduction to Statistical Inference

Third step: applying an estimator to data

To estimate or quantify the parameters we set an estimator.
An estimator is just a formula applying to data, that is
calculated to approximate the value of a given parameter. For
example, the aritmethic mean, or the biggest data.

Generally, we denote a parameter by θ or other greek letter,
an an estimator for that parameter as θ̂.

For example, to estimate µ, the population mean, we usually
apply µ̂ = x, the sample mean. That kind of intuitive
estimators are called natural estimators.
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Fourth step: quantifying parameters

Having calculated the estimator, we have two ways to quantify the
unknown parameters:

we may take the result in the estimator directly as an
estimation for the parameter, that is to say, to make a point
estimation; for example: û = x = 4.5.

and we may also take that result as a basis to perform a
statistical test (for example, H0 : µ = 4, taking as evidence:
x = 5).
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Introduction to Statistical Inference

Differences between estimators and parameters

Parameters Estimators

Notation: θ Notation: θ̂ (θ’s estimator)
Corresponds to population Corresponds to sample

Constants Changing form one sample to other
Usually unknown Calculated from data

θ unique several θ̂ available
E.g.: µ (population mean) E.g.: µ̂1 = x, µ̂2 =Me

Josemari Sarasola Introduction to Statistical Inference 12 / 21



Introduction to Statistical Inference

Fifth step: validation

Some assumptions are usually made when we apply classical
statistical inference:

data are really random, and don’t show a tendency;

data are fit for the assumed model at the beginning of the
inference process (e.g. Poisson, uniform, ..); that is we have
to validate the goodness of fit.

data are homogenous, from an unique distribution or
population (e.g., when we assume male and female data have
the same features), so we can put them all together in one
sample.

So we must validate (1) randomness (that is, independence) (2)
model+quantified parameters, and (3) homogeneity.
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Validation

Test for randomness (independence):
Wald-Wolfowitz runs test

We can apply this test to dichotomous and quantitative
variables.

A run is a consecutive sequence of data with the same value.

When data are quantitative, a run denotes a sequence of data
below or above the median.

Testing statistic is the number of runs: e.g., into the
XX0XX000XX sequence number of runs is R = 5.

Very important!: runs must be counted in the order the data
have been collected.
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Validation

Test for randomness: Wald-Wolfowitz runs test

XXXXXOOOOO: R=2(few) → no random → dependence

XOXOXOXOXO: R=10(many) → no random → dependence

XXOOOXOXXO: R=6 (neither few, nor many) →
data are random, and therefore independence.

Hence, [H0:randomness/independence] is rejected when no. of
runs is big or small enough (hence, it’s a two-sided test).
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Validation

Test for randomness: Wald-Wolfowitz runs test

Critical values are tabulated for small samples. We reject
randomness when R no. of runs is equal or larger than the
upwards critical value, or equal or smaller than the downwards
critical value.

For big samples, runs distributes in this manner under H0:

R ∼ N
(
µ =

2n1n2
n1 + n2

+ 1, σ =

√
2n1n2(2n1n2 − n1 − n2)
(n1 + n2)2(n1 + n2 − 1)

)
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Validation

Test for goodness of fit: chi-square test

Applying chi-square test we will use a new distribution: χ2
n, named

chi-square, with only one parameter: n, named degrees of freedom,
taking only integer positive numbers. It’s like this:

1− α

0 χ2
α,n

a

Chi-square values are tabulated, for given values of 1− α
probabilities below. E.g.,

χ2
0.01,4 = 13.3

χ2
0.25,2 = 2.77
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Validation

Test for goodness of fit: chi-square test

H0: model is fit or OK for data.

We calculate observed (Oi) and expected (Ei) frequencies, the
latter from theoretical probabilities..

Calculate X2 = (Oi−Ei)
2

Ei
statistic (a statistics is a formula from data; all estimators are

statistics, but not all statistics are used as estimators for parameters).

X2 being very big means that observed and expected frequencies
are very different, and hence we should reject the assumed model.
Hence, chi-square test is one-tailed and the critical region in on the
upper side.

To perform the test, we compare X2 statistic to the critical value:

to χ2
α,k−1 value, k being number of differents values or

intervals for data; or,
when some parameters are estimated in the assumed model, to
χ2
α,k−e−1 value, e being the number of estimated parameters.
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Validation
Goodness of fit tests

Example

We flip a coin and we get 86Xs and 114 Os. Do we have a balanced
coin? Significance-level: 10%.
Model: p(o)=p(x)=0.5

Outcomes Observed (O) Prob. Expected (E)
(O − E)2

E
o 86 0.5 0.5× 200 = 100 1.96
x 114 0.5 0.5× 200 = 100 1.96

200 200 X2 = 3.92

In a chi-square distribution with 2-1=1 degree of freedom, the value
leaving above it a probability of 0.1 is 2.71. So, the value of the statistic
(the distance observed/expected) is significative, so we reject the model
and claim that the coin is not balanced.
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Validation

Test for homogeneity: Wilcoxon rank sum test

For quantitative data, but distinguishable about a
dichotomous feature (e.g., califications for some men and
women)

H0: feature (sex) doesn’t have influence, that is, homogeneity
(hence, all califications may be taken as a unique sample).

Sort all data from the smallest to the biggest.

Calculate ranks, distinguishing about the dichotomous feature.

Calculate W rank sums about both categories in the feature.

Take smallest W as testing statistic: Wmin.
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Validation

Test for homogeneity: Wilcoxon rank sum test

Very small values for Wmin statistic mean that both subsets
of data are different.

Test is two-tailed because Wmin may correspond to either of
the categories.

Critical values are tabulated, for different numbers of data in
both categories.

For big sample sizes, W1 statistics distributes like this, n1
being the sample size for the category no. 1:

W1 ∼ N
(
µ =

n1(n1 + n2 + 1)

2
, σ =

√
n1n2(n1 + n2 + 1)

12

)
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