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Combinatorics

What is combinatorics?

Before learning to calculate probabilities, we must learn to
count.

Combinatorics is the collection of mathematical methods to
count in complex problems.

Question: how many subsets of 2 elements can we create
from a set of 4 elements (a,b,c,d)?
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Combinatorics

Ways to count

In order to give an answer to the previous question, we must
specify which subsets of 2 elements are really different:

If we account the order and don’t accept repetitions, we have
12 pairs: ab-ac-ad-bc-bd-cd-ba-ca-da-cb-db-dc. These are
variations without repetition.

If we account the order and do accept repetitions, we have 16
pairs: add aa-bb-cc-dd to the previous pairs. These are
variations with repetition.

If we don’t consider the order and don’t accept repetitions, we
have 6 pairs: ab-ac-ad-bc-bd-cd. These are combinations.

If we don’t consider the order and accept repetitions, we have
10 pairs: add aa-bb-cc-dd to the previous pairs. These are
multicombinations.
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Combinatorics

Combinatorial formulas

In the general problem, we have to choose a subset of k elements
from a main set of size n. These are the general formulas to count
in the ways we have previously given:

Variations without repetition (also called k-permutations of n):

V k
n =

n!

(n− k)!

Variations with repetition : V Rkn = nk

Combinations: Ckn =

(
n

k

)
=

n!

k!(n− k)!

Multicombinations: Mk
n =

(
n+ k − 1

k

)
Exercise: Apply these formulas in order to calculate the results in
the previous slide.
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Combinatorics

Combinations: properties(
n

0

)
= 1(

n

1

)
= n(

n

n− k

)
=

(
n

k

)
Shortcut: in order to calculate

(
n

k

)
, multiply n in a

”decreasing way” just the number of times shown by number

k, and divide it by k!. E.g.:

(
7

3

)
=

7× 6× 5

3!
= 35.
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Combinatorics

Another way to count: permutations

In other problems we want just to arrange n elements in
different orders. Each of these ordered sequences is called a
permutation.

The number of permutations of n elements is Pn = n!

E.g.: a-b-c elements are ordered in 3!=6 ways: abc, acb, bac,
bca, cab, cba.
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Combinatorics

Permutations with repetition

But the previous formula doesn’t work when some of the
elements are repeated (e.g, with a-a-b elements).

In those cases, we must apply the formula for permutations
with repetition (α, β: number of repetitions):

PRα,β,...n =
n!

α!β! . . .

E.g.: a-a-b elements are ordered in 3!/2!1!=3 ways: aab, aba,
baa.
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Probability

Probability: definition and interpretation

Probability: measure of uncertainty of a random event.

E.g.: the probability of raining in a day in August in Donostia
is 0.2 (or 20%)

Interpretation: in the long term, around in 20% of the days in
August it will rain.
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Probability

Basic methods to calculate probability

Laplace’s rule

Frequential interpretation

Subjective probability
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Probability

Laplace’s rule

P (A) =
number of outcomes resulting into A

total number of outcomes

Example: Probability of getting odd after throwing a dice:

P [odd] =
{1, 3, 5}

{1, 2, 3, 4, 5, 6}
= 0.5

BUT, all possible outcomes must be EQUIPROBABLE (with
the same chances to happen) to apply this rule.

Example: Can we apply the rule for the probability of raining
tomorrow?

When we apply Laplace’s rule, we often must use
combinatorial formulas, in order to count the number of
possible outcomes.
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Probability

Frequential interpretation

Example: how to calculate the probability for an abstract new
student to pass the statistics exam?

According to Laplace’s rule, it will 0.5, as there are two
outcomes: passsing and not passing.

BUT, we cannot take those two outcomes as the were
EQUIPROBABLE. So, what can we do?

Compile data from the past or make some experiments.

Example: We give an exam to 200 new students, and 160
(frequency for passing) of them passed. So:

P [passing] =
160

200
= 0.8
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Probability

Frequential interpretation: remarks

Experiments and data must be homogeneous, that is, always
with the same conditions (don’t pass the same exam in
different days!)

It can be expensive and difficult to undertake (experiments in
nuclear plants, ummm!)

The result is an estimation, but a big number of experiments
will give us a small error almost surely.
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Probability

Subjective probability

Example: What is the probability of you (yes, you) passing the
statistics exam?

We cannot carry out experiments with you, because as you
make exams you are better in statistics. So, it’s impossible to
repeat the same conditions.

Solution: take into account all personal factors about
learning, understanding and studying (Are you clever? Did
you understand the course? Do you regularly study?) and
according to the results, make a a subjective estimation of the
probability.

Another examples: probability of inflation rising next year,
probability of sales increasing next year, probability of Euskal
Herria being independent from Spain in the next ten years.
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Probability

Subjective probability

Generally, subjective probability is the level of belief that a rational
individual has about the ocurrence of a given event. The
subjektive probability can be given in two ways:

weak subjectivism: when objective factors (causality,
experience) are taken into account in roder to quantify the
probability (we also this interpretation, epistemic probability).

strong subjectivism: when there is no objective factor to
give the probability, and the probability relies absolutely on
the beliefs of the individual.
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Probability: event algebra

Event algebra

We have learned how to calculate probability of simple events.
But how to calculate the probability of combined events?
And, how to combine events?

So, now we are going to learn event algebra.

First concept: sample space or universe , named Ω, the set of
possible outcomes of a random process.

Example, afther throwing a dice: Ω = {1, 2, 3, 4, 6} or
Ω = {odd, even}.
We usually depict the sample space by means of a Venn
diagram:

1
2

3
4

5
6

Ω
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Probability: event algebra

Complementary events

The complementary event of any A event is the event that
happens when A doesn’t occur. We write it A

Example: about gender, man and woman.

Depiction:

A A

Ω

Figure: A eta A are complementary events.

Basic rule for complementary events: P [A] = 1− P [A]
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Probability: event algebra

Mutually exclusive events

Two events are mutually exclusive if they can’t occur at the
same time.

Depiction:

A B X Y

ΩΩ

Figure: A eta B (on the left) are not mutually exclusive.
X eta Y (on the right) are mutually exclusive.

Example: Man and using tampons are mutually exclusive, bu
man and vegetarian are not.

Exercise: Are complementary events mutually exclusive? And
inversely?
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Probability: event algebra

Intersection of events

The intersection of two events A and B, denoted by A ∩B, is
the event that happens when both A and B happen at the
same time.

Depiction:

Ω

BA

Figure: A ∩B (gray): The intersection of A and B events

Exercise: How is the intersection of two complementary
events? And what is its probability?
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Probability: event algebra

Union of events

The union of two events A and B, denoted by A ∪B, is the
event that happens when at least one of those events happen.

Depiction:

A B

Ω

Figure: A ∪B (gray): The union of A and B events

When A1, A2, . . . , An are mutually exclusive, here is how we
calculate the probability of the their union:

P (A1 ∪A2 ∪ . . . ∪An) = P (A1) + P (A2) + . . .+ P (An)
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Probability: event algebra

Substraction of events

The substraction of B event from A event , denoted by
A−B, is the event that happens when A happens but B not.

Depiction:

A−B B−A

A B

Ω

Figure: A−B: ”A happens but B not” and B −A: ”B happens but A not”.
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Probability: event algebra

Events as subsets of other events

A is a subset of B event , denoted by A ⊂ B, if whenever A
happens, B also happens.

Depiction:

A

B

Ω

Figure: A ⊂ B: A is a subset of B.

If A is subset of B, what is A ∩B? And A ∪B?
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Probability: event algebra

De Morgan’s laws

A ∪B = A ∩B

A ∩B = A ∪B
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Probability: event algebra

Inclusion-exclusion principle

We apply the inclusion-exclusion principle to calculate the
probability of the union of events

For A and B events: P (A ∪B) = P (A) + P (B)− P (A ∩B)

For, A, B and C events:

P (A ∪B ∪ C) =P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+ P (A ∩B ∩ C)
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Probability: event algebra

Inclusion-exclusion principle

For A1, A2, A3, . . . , An events:

P (A1 ∪A2 ∪A3 ∪ . . . ∪An) =
P (A1) + P (A2) + P (A3) + . . .+ P (An)

−P (A1 ∩A2)− P (A1 ∩A3)− . . .− P (An−1 ∩An)
+P (A1 ∩A2 ∩A3) + . . .+ P (An−2 ∩An−1 ∩An)

−P (A1 ∩A2 ∩A3 ∩A4)− . . .
+ . . .

So we must add all simple events, substract all double events, add
all triple events, substract all quadruple events, and so on, till
reaching the whole set of events.
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Probability: event algebra

Inclusion-exclusion principle

When all events are mutually esclusive, all their possibl
intersections are empty, so the inclusion-exclusion principle gives
the rule we already know:

P (A1 ∪A2 ∪ . . . ∪An) = P (A1) + P (A2) + . . .+ P (An)

So whenever events are mutually exclusive, we calculate the
probability of their union by just adding their simple probabilities.
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Product of probabilities

Conditional probability

We denote P (B/A) the conditional probability of B given A, that
is, the probability of B provided (under the condition) that A has
occurred:

P (B/A) =
P (A ∩B)

P (A)

BA:Ω

Figure: If A has occurred, sample space narrows to A event.
In that new universe, the probability of B, that is P (B/A),
is the domain that B event takes into the domain of A,
that is P (A ∩B), but restricted to P (A).
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Probability: product of probabilities

Chain rule

Also named general product rule, it gives the probability of
the intersection of two or more events.

For two events: P (A ∩B) = P (A)× P (B/A)

For n events:
P (A1 ∩A2 ∩A3 ∩ . . . ∩An) =
P (A1)× P (A2/A1)× P (A3/A1 ∩A2)× . . .×
P (An/A1 ∩A2 ∩A3 ∩ . . . ∩An−1)

When events are given in a chronological order, as usual, the
application of the rule is much easier when we follow that
order by multiplying the probabilities.
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Probability: product of probabilities

Chain rule: example

We have made a survey among Basque young people aged 18-30:

Are you vegan? Total

Sex Yes No

Male 25 20 45
Female 40 15 55

Total 65 35 100

1 If you are a woman, what is the probability of being vegan?
Answer:

2 We select randomly a Basque young, what is the probability of
being a vegan male?
Answer:
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Probability: product of probabilities

Dependence and independence

We say A and B are independent events, when knowing that
one of them has happened (or not) doesn’t give any
information about the probability of the other one:

P (A ∩B) = P (A)× P (B/A) = P (A)× P (B)

On the other side, if the occurence of one of the events gives
information about the other(s), those events are dependent.
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Probability: product of probabilities

Dependence: sampling without devolution

Example: In an urn, we have 6 faultless and 4 faulty items.
We select randomly two items without devolution. What is
the probability of both of them being faultless?

P [1o ∩ 2o] = P [1o]× P [2o/1o] =
6

10
× 5

9

So, sampling without devolution implies dependence, as
number of items changes as we extract the elements in the
population.
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Probability: product of probabilities

Dependence: sampling with devolution

Example: In an urn, we have 6 faultless and 4 faulty items.
We select randomly two items with devolution. What is the
probability of both of them being faultless?

P [1o ∩ 2o] = P [1o]× P [2o] =
6

10
× 6

10

We can see probability doesn’t change as we select items. No
matter which are the selected elements, probability remains
always constant. So, sampling with devolution implies
independence, as the population remains always unchanged.
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Probability: product of probabilities

Probability trees

Example: In an urn, we have 6 faultless and 4 faulty items.
We select randomly two items without devolution. What is
the probability of the second one being faulty?

It depends:

If the first item is faulty: 3/9.
If the first item is faultless, 4/9.

Provided we know nothing about the first item, the answer
will be between the two previous values, weighted by the
probabilities of the first item being faulty and faultless:
P (2x) = P [(1o ∩ 2x) ∪ (1x ∩ 2x)] =
P (1o)× P (2x/1o) + P (1x)× P (2x/1x) =
6

10
×

4

9
+

4

10
×

3

9
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Probability: product of probabilities

Probability trees

Graphically it’s easier:

1 : o
P (2:x/1:o)=4/9 // 2 : x

Start

P (1:o)=6/10

88

P (1:x)=4/10
&&
1 : x

P (2:x/1:x)=3/9 // 2 : x
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Probability: product of probabilities

Probability trees

We have just to follow the path in order to reach the event we
want,

multiplying probabilities into the path;

adding probabilities of different paths.

6

10
×

4

9
+

4

10
×

3

9

Some basic rules:

We have to calculate each probability assumed that previous
events have happened.

The probabilities following a node or switch must add to 1,
except at the last one, that is, except when we reach to the
desired probability.
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Probability: product of probabilities

Probability trees

Probability trees are useful in these situations:

When the solution to a probability problem is ’it depends on’.
In that case we switch to the different possibilities.

When we have a chronology: a sequence of events over time.
In that case, we follow the paths in the chronologic order.

Probability trees are the rule-of-thumb version of the law of total
probability:

P (A) =
∑
n

P (A/Bn)P (Bn)
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Probability: Bayes’ theorem

Bayes’ theorem: example

In an urn we have 8 faultless and 3 faulty items. We sent a piece
randomly to a customer. After that, we inspected an item and we
saw it was faulty. What is the probability of the first one being
faulty?

B: 2nd faulty

Ai P (Ai) P (B/Ai) P (Ai)× P (B/Ai) P (Ai/B)
1st faulty 3/11=0.27 2/10=0.2 0.054 0.199

1st faultless 8/11=0.73 3/10=0.3 0.219 0.801
1 0.273 1
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Probability: Bayes’ theorem

Bayes’ theorem: some clues

The goal of the Bayes’ theorem is to adjust the probability of an
event according to an information we have got.

The probabilities before knowing the information are P (Ai) and we
call them a priori (previous) probabilities. The adjusted probabilities
according to the known facts (P (Ai/B)) are called a posteriori
(following) probabilities, denoting by B the information we get and
use to adjust a priori probabilities.

The verosimilities are the probabilities of the information we get
known that each of the Ai events has occurred: P (B/Ai)

Most often data in a Bayes’ problem are the a priori probabilities
and verosimilities (first three columns) and the goal is to calculate
the a posteriori probabilites.

The sum of both a priori and a posteriori probabilities is always 1
(they represent the probabilites of everything that may happen).
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Probability: Bayes’ theorem

Bayes’ theorem: returning to the example

We want to know the probability of the 1st piece being faulty, so we
set P (A) as ”faulty” and ”faultless” (everything that may happen).

We set verosimilities: if the 1st item is faulty (faultless) what is the
probability of the 2nd one being faulty (the information we get).

The following steps are all ”mechanical”, leading us to the a
posteriori probabilites, ”1st faulty” and ”1st faultless” but taking b
into acconut this time.

As the 2nd piece was faulty, intuitively it’s clear that the probability
of the 1st piece being also faulty must be lower (0.27→ 0.199).
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Probability: introduction to statistical testing

Example: Planet Nine

2016: astronomers Mike Brown and Konstantin Batygin inferred the
existence of a large planet beyond Neptune: the Planet Nine.

Set a hypothesis that can be assumed (H0): there’s no planet
beyond Neptune (let’s be cautious: we have not detected anything!).

Evidence: Brown and Batygin found orbits of some TNOs (Trans
Neptunian Objects) were clustered.

Statistical testing: probability of that clustering is very small
provided H0. By contrast that clustering is likely if Planet Nine
exists.

Conclusion: we may accept the hypothesis of the Planet Nine. But
it remains always a hypothesis!
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Probability: introduction to statistical testing

Statistical testing: steps

Goal: take a decision about if a hypothesis is true or not, according
to evidence.

First step: set a null hypothesis (the statement we accept as a
matter of principle, with caution and without any other evidence),
denoted by H0 .

Calculate the probability of the evidence, provided that H0 is true.

If the probability of the evidence (called p-value) is very low, we
conclude that it’s strange that the evidence happened provided that
H0 is true, so we reject H0. Otherwise (when the p-value is not low
enough) we must think the evidence is a normal fact under H0, so
we must accept H0.

How do we know p-value is low or not low enough? We set at the
beginning (in order to be neutral) the significance level, denoted by
α. It’s a low enough probability; usually 0.01, 0.05 or 0.10. So, if
p− value < α, we reject H0; otherwise we accept it.
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