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Normal distribution

The normal distribution is the most applied distribution in
statistics:

it’s bell shaped and symmetric, and therefore it can be applied
to many variables (that’s because we call it normal);

it’s the limit of many other probability distributions;

and it has many interesting mathematical properties.
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Normal distribution

It has been studied and applied since the XVIIIth century, beginnig
with the works of French mathematicians Abraham de Moivre and
Pierre-Simon de Laplace. German mathematician Carl Friedrich
Gauss applied it for the first time, within the research of
astronomical errors. That’s because is also called Gaussian
distribution.

Figure: Deutsche Mark banknote: Gauss and normal distribution are depicted.
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Normal distribution

Density function, parameters and notation

Density function (not worth studying, it’s not used):

f(x) =
1

σ
√
2π
e−

(x−µ)2
2σ2 ; −∞ < x <∞

X ∼ N(µ, σ)
µ : expected value σ : standard deviation

It’s symmetrical around µ (very useful to calculate probabilities)
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Normal distribution
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Normal distribution

Standard normal distributions

Z ∼ N(µ = 0, σ = 1) is the standard normal distribution. We
always call it Z. We use it as a basis to calculate probabilities for
any other normal distribution, by means of standardizing (see next
slide).
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Normal distribution

Standardizing

To calculate probabilities easily, all normal distribution must be
transformed to the standard normal distribution, by menas of
standardizing:

X ∼ N(µ, σ)→ Z =
X − µ
σ

∼ N(0, 1)

So, if we take any normal distribution and we substract its mean
and divide it by its standard deviation, it will become a standard
normal distribution. We call the standardized values standard
scores.
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Normal distribution

Linear transformations

Let be X ∼ N(µ, σ) and let’s create this transformed variable:
Y = a+ bX. It can be proven that Y is also normal:

Y ∼ N(a+ bµ, |b|σ)
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Normal distribution

Sum of normal distributions

Let be

X1∼N(µ1,σ1)

X2∼N(µ2,σ2)

...

Xn∼N(µn,σn) all of them independent with each other.

It can be proven:

Y=X1+X2+...+Xn∼N
(
µ1+µ2+...+µn,σ=

√
σ2
1+σ

2
2+...+σ

2
n

)

Hence, sum of normal distributions follows a normal distribution.
In statistics we say the normal distribution is reproductive, and the
property is named reproductivity.

Remark:
√
σ2
1+σ

2
2+...+σ

2
n 6=σ1+σ2+...+σn (we always add variances!)
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Normal distribution

R software

pnorm(1.45) #P[Z<1.45]

1-pnorm(1.45) #P[X>1.45]

pnorm(1.45,lower.tail=FALSE] #P[X>1.45]

pnorm(4,mean=3,sd=1.5) #P[X>4], X:N(3,1.5)

qnorm(0.90) #P[Z<z]=0.9,z?

qnorm(0.90,,mean=3,sd=1.5) #P[X<x]=0.9, x?,X:

N(3,1.5)
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Normal distribution

De Moivre-Laplace theorem:
normal approximation of the binomial distribution

If we have a B(n, p) distribution, with big n (n ≥ 30), and p not
being small (np ≥ 10), -because in those cases, with small p, we use

Poisson approximation, taking λ = np-, we can approximate binomial
probabilities with a normal distribution:

B(n, p) −−−→
n≥30

N(µ = np, σ =
√
npq)

This approximation is called De Moivre-Laplace theorem.
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Normal distribution

Normal approximation of the Poisson distribution

If we have a P (λ) distribution, with a big λ (λ ≥ 30), we can
approximate it with a normal distribution:

P (λ) −−−→
λ≥30

N(µ = λ, σ =
√
λ)
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Normal distribution

Continuity correction

Applying De Moivre-Laplace and normal approximation for Poisson, we are
finally approximating a discrete distribution (binomial and Poisson) by a
continuous distribution (normal). In order to be more precise in the
calculations, we use the continuity correction. Here you have some examples:

P [X = 10] = P [9.5 < X < 10.5]

P [X ≤ 10] = P [X < 10.5]

P [X ≥ 10] = P [X > 9.5]

P [X > 10] = P [X > 10.5]

P [X < 10] = P [X < 9.5]

The error resulting from not applying the corrections is most times very small.

Therefore, the correction is needed only when we have to be very precise in the

calculations.
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Normal distribution

Central Limit Theorem (CLT)

We know that sum of normal distributions distributes following a
normal distribution. But what if adding up distributions are not
normal?

In that case, sum of distributions distributes normally too, but if
two condtions are held:

1 distributions must be independent (as for sum of normal
distributions) and,

2 no. of adding up distributions must be large (generally, 30 or
larger).

We name this result Central Limit Theorem (CLT). De
Moivre-Laplace theorem and normal approximation for Poisson are
special cases of CLT.
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Normal distribution

Central Limit Theorem (CLT)

X1∼?(µ1,σ1)

X2∼?(µ2,σ2)

...

Xn∼?(µn,σn), all of them independent, with known means and
variances, and having n ≥ 30,

then, this holds:

Y=X1+X2+...+Xn∼N
(
µ1+µ2+...+µn,σ=

√
σ2
1+σ

2
2+...+σ

2
n

)

That is to say, sum of many independent distributions is always a
normal distribution, taken sum of means as the mean, and sum of
variances as the variance.
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