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Introduction

Let’s take a space distribution of points (cancer cases, flats on
sale, ...):
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Spatial pattern types

Clustered Random Regular (overdispersion)
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How to decide statistically if a given point distribution is clustered,
random or regular?
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Spatial patterns and Poisson processes

Random point disributions are a special kind of Poisson processes.
Usually Possion processes apply to time (one dimension) but we
can also extrapolate them to more dimensions (2 dim., for spatial
patterns). In those cases, lambda parameter expresses the mean
number of points per space unit.
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Random? Nearest neighbor method

Calculate distance for each point to the nearest neighbor (double
arrow shows bidirectional nearest neighbor) :
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2.1

1.8

1.9

2.8

1.5

We calculate the mean:

d =
2.1 + 1.8 + 1.8 + 1.9 + 1.9 + 2.8 + 2.8 + 1.5 + 1.5

9
= 2.01

Josemari Sarasola Spatial analysis 5 / 22



Random? Nearest neighbor method

In clustered patterns, average distance is small, intermediate for
random patterns and big for overdispersed patterns. But when is
the average small, intermediate or big?
In random patterns, the average distance is a function of λ point
density. We calculate λ density in this way:

λ =
n

A

From this value, the expected value for the average distance in
random patterns is this one:

E[d] =
1

2
√
λ

Josemari Sarasola Spatial analysis 6 / 22



Random? Nearest neighbor method

In the example, the area is 10× 10 = 100 unit. We have 9 points.
So density is: 9/100=0.09.
And the expected value for distance is:

E[d] =
1

2
√
0.09

= 1.66

So, we could decide in this way:

d ≈ E(d)→ random

d < E(d)→ clustered)

d > E(d)→ regular (overdispersed)
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Random? Nearest neighbor method

For example, if the average distance is 2.01. We should conclude
that the pattern is somehow clustered. But, statistically we should
decide if 2.01 is significantly far from 1.66, because in fact a 2.01
value may be compatible with randomness. (It’s like when after
throwing a dice 60 times, you cannot conclude that the dice is
unfair because number 1 didn’t appear exactly 10 times. So, we
should’nt take 1.66 as a fixed value, but as an approximate one.
So we must decide with a statistical test or a confidence interval.
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Random? Nearest neighbor method

For a 90% confidence level, this is the interval of acceptance for
randomess, around the average distance given by lambda, having n
points:

1

2
√
λ
± 1.64

√
4− π
4πnλ

As the numer of points grows, the interval shortens (it’s logical: with
more points, the certainty for the average distance is bigger).
This in the interval for our data:

1

2
√
0.09

± 1.64

√
4− π

4π × 20× 0.09
: (1.66± 0.32) : (1.34, 1.98)

2.01 is on the upper side of the interval of randonmess, so the spatial

pattern in overdispersed or regular with 90% of confidence.
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Random? Nearest neighbor method

Disadvantages

(1) Both patterns are different but the give a similar mean
distance:
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Random? Nearest neighbor method

(2) Perspective is relevant. In this pattern, from a close POV, is
regular, but looking into it from far away is clustered:

•

•

•
•

•
• •

•
•

•• ••• ••

Josemari Sarasola Spatial analysis 11 / 22



Random? K function method

Better than nearest neighbor: overcomes the first disadvantage

1 From each point we draw a circle of radius h and count the
no. of points inside: pi . Sum of pi is P .

2 Caculate K function, for different h values:

K(h) =
P

nλ

3 We compare K(h) values with a values corresponding to
randomness:
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Random? K function method
4
cm

1 2•

•

•

•

•

•

•

•

•

n = 9
azalera = 4cm× 4cm = 16

λ = 9/16 = 0.56

Point K(1cm) K(2cm)

• p1 0 1
• p2 1 1
• p3 0 0

P 1 2

K(h)
1

3× 0.56
= 0.59

2

3× 0.56
= 1.18

We must count for all points. We have
done for only 3 points as an example.
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Random? K function method

Interpretation

Under randomess the expected value for K(h) is πh2. So:

K(h) ∼ πh2 → random

K(h) > πh2 → cluster

K(h) < πh2 → regular (overdispersion)

h K(h) πh2

1 0.59 3.14
2 1.18 12.56

In our example:
K(h) < πh2 → regular. •

•
•

•
K(h)
πh2
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Random? K function method

Usual patterns: one-clustered
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K(h)

πh2

Usual patterns: several clusters
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Random? K function method

Usual patterns: overdispersion

•
•

•

•

• •
•

•

•

K(h)

πh2

Usual patterns: random
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Random? Method of squares

Divide the area into equal-sized squares and count the no. of
points into each one:

4 1 0 0 0

0 0 0 1 0

1 1 3 0 0

0 0 0 0 2

0 0 1 1 0
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Random? Method fo squares: Lloyd’s crowding mean

For each point in each square, we count how many ”friends”has
each point:

3 3
33 0

0

0 0 2
2

2

1 1

0 0
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Random? Method fo squares: Lloyd’s crowding mean

Crowding mean is the mean of the no. of ”friends”

m∗ =
3 + 3 + 3 + 3 + 0 + 0 + 0 + 0 + 2 + 2 + 2 + 1 + 1 + 0 + 0

15 points
= 1.33

Now, we calculate the mean number of points for each square:

m =
4 + 1 + 0 + · · ·+ 1 + 0

25 squares
= 0.66
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Random? Method fo squares: Lloyd’s patchiness index

Patchiness index

m∗

m

The bigger the index is, the clustering becomes more and more
evident.

m∗
m
≈ 1→ random (Poisson)

m∗
m

> 1→ clustering

m∗
m

< 1→ overdispersion

In our example,
m∗
m

=
1.33

0.66
= 1.33→ cluster
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Randomness in a previously clustered pattern

This distribution of points shows the distribution of flats on sale in
a geographical area.

city

•
• • •

•
•• •

•

•

countryside

The question is: Are the flats clustered? In a strict sense yes (and
the methods we have learnt would reflect that), but we have to
take into account that all flats are previously clustered into the
city. Actually, into the city flats seem to distribute randomly.
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Randomness in a previously clustered pattern

A solution is taking a sample from the population of all flats, on
sale or not (red cross), analyze its clustering and comparing it to
the clustering of flats on sale:

city

•
• • •

•
•• •

•

•

countryside

If clustering of flats on sales bigger than that of the sample of all
flats, we really have clustering for flats on sale; if not, flats on sale
would be (more or less) overdispersed related to all the population
of flats.
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