Confidence intervals

Josemari Sarasola
Statistics for Business

Confidence interval

Point estimation and interval estimation

- To quantify parameters we can apply directly the formula of the estimator to sample data. We name this procedure a point estimation.
- Point estimation: μ ? $\rightarrow \hat{\mu}=\bar{x}=4$
- Interval estimation: $\mu ? \rightarrow \mu=4 \pm 1: 3<\mu<5$ with a 90% confidence level. ± 1 is the estimation error.
- Interval estimations give more information than point estimations.
- Notation: ϵ : estimation error; $1-\alpha$: confidence level; n, sample size.

Interval about the population mean

t interval

- Use with normal population, small sample size $(n<30)$ and unknown σ.
- We calculate \bar{x} and \hat{s}.
- Sampling distribution: $\frac{\bar{x}-\mu}{\hat{s} / \sqrt{n}} \sim t_{n-1}$
- Interval for a $1-\alpha$ confidence level:

$$
I_{\mu, 1-\alpha}: \bar{x} \pm t_{n-1, \alpha / 2} \frac{\hat{s}}{\sqrt{n}}
$$

Interval about the population mean

Schema of the interval

Interval about the population mean

Properties of confidence intervals

They are also general properties for all kind of confidence intervals:

1 The bigger is n, the narrower is the interval (because we have more information)
2 The bigger is the deviation, the wider is the interval (because with larger deviations, the uncertainty in bigger).
3 The bigger is the confidence, the wider is the interval (if we want more confidence about something, we must widen its limits)

Interval about the population mean

Asymmetric t intervals

$$
\text { - } I_{\mu, 1-\alpha}: \mu>\bar{x}-t_{n-1, \alpha} \frac{\hat{s}}{\sqrt{n}}
$$

$I_{\mu, 1-\alpha}: \mu<\bar{x}+t_{n-1, \alpha} \frac{\hat{s}}{\sqrt{n}}$

Interval about the population mean

t interval with big samples $(n \geq 30)$

- Whenever $n \geq 30, t_{n}$ (almost) becomes $N(0,1)$
- So, $I_{\mu, 1-\alpha}: \bar{x} \pm z_{\alpha / 2} \frac{\hat{s}}{\sqrt{n}}$

Interval about the population proportion

Population and sample proportions

- p : population proportion; e.g., proportion of voters for X party. It's generally unknown.
- \hat{p} : sample proportion; e.g., proportion of voters for X party in a survey. It's known: we ask 50 people, 20 say ' X party'; then $\hat{p}=\frac{20}{50}=0.4$.

Interval about the population proportion

Construction of the interval

- Need big samples: $n \geq 30$.
- Sampling distribution: $\hat{p} \sim N\left(p, \sqrt{\frac{p q}{n}}\right)$
- $I_{p, 1-\alpha}: \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{p q}{n}}$
- But we dont' know either p or q. So we take their estimates: \hat{p} and \hat{q}.
- Then,

$$
I_{p, 1-\alpha}: \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}
$$

Interval about the population proportion

The standard error

A key factor when we set a confidence interval is the standard deviation of the estimator, when the sampling distribution follows a normal distribution. We call that standard deviation the standard error.
For example, for the sample proportion the standard error is $\sqrt{\frac{p q}{n}}$. If we want to set good (narrow) intervals, we need a small standard error. We can have a small standard error usually in two ways: clearly, taking a bigger sample size; and also choosing an estimator with a small standard deviation or standard error (in statistics, we say a efficient estimator).

Interval about the population proportion

Asymmetric intervals

- $I_{p, 1-\alpha}: p>\hat{p}-z_{\alpha} \sqrt{\frac{\hat{p} \hat{q}}{n}}$
- $I_{p, 1-\alpha}: p<\hat{p}+z_{\alpha} \sqrt{\frac{\hat{p} \hat{q}}{n}}$

Interval about the population proportion

Sample size

- Problem: calculate sample size for given ϵ error and $1-\alpha$ confidence level in a symmetric interval.
- From the original interval:

$$
\epsilon=z_{\alpha / 2} \sqrt{\frac{p q}{n}} \rightarrow n=\frac{z_{\alpha / 2}^{2} p q}{\epsilon^{2}}
$$

Interval about the population proportion

Sample size

- But we don't know p and q !
- First solution (pessimistic): the biggest needed sample size is when $p=q=0.5$. So:

$$
n=\frac{z_{\alpha / 2}^{2} \times 0.5 \times 0.5}{\epsilon^{2}} \rightarrow \frac{z_{\alpha / 2}^{2}}{4 \epsilon^{2}}
$$

- Second solution: take a pilot sample (small and previous to the main sample) and estimate p and q, giving p_{0} and q_{0} :

$$
n=\frac{z_{\alpha / 2}^{2} p_{0} q_{0}}{\epsilon^{2}}
$$

